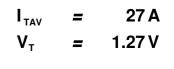
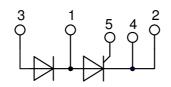
MCD26-14io1B


 $= 2 \times 1400 \text{ V}$

Thyristor \ Diode Module

Phase	leg
-------	-----

Part number


MCD26-14io1B

 V_{RRM}

Backside: isolated **E**72873

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting

20161222b

- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

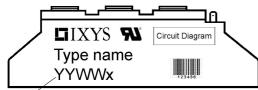
IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

LIXYS

MCD26-14io1B

Symbol	Definition	Conditions		min.	typ.	max.	Uni
-			$T_{vJ} = 25^{\circ}C$	min.	typ.	1500	Uni \
V _{RSM/DSM}	max. non-repetitive reverse/forwa		$T_{vJ} = 25 °C$			1400	، ۱
V _{RRM/DRM}	,	$V_{B/D} = 1400 \text{ V}$	$T_{vJ} = 25^{\circ}C$			1400	i
R/D	reverse current, drain current						μA
.,	formula in the second second	$V_{\rm R/D} = 1400 \text{ V}$	$T_{v_J} = 125^{\circ}C$			3	m/
V _T	forward voltage drop	$I_{T} = 40 \text{ A}$	$T_{vJ} = 25^{\circ}C$			1.27	۱ ۱
		$I_{T} = 80 \text{ A}$	T 40500			1.64	
		$I_{T} = 40 \text{ A}$	$T_{vJ} = 125 ^{\circ}C$			1.27	۱ ۱
		$I_{T} = 80 \text{ A}$	T (0500			1.65	١
	average forward current	$T_c = 85^{\circ}C$	$T_{VJ} = 125^{\circ}C$			27	ļ
T(RMS)	RMS forward current	180° sine				42	ŀ
V _{T0}	threshold voltage } for power li	oss calculation only	$T_{vJ} = 125^{\circ}C$			0.85	۱
r _T	slope resistance					11	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.88	K/W
R _{thCH}	thermal resistance case to heatsi	nk			0.20		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			115	N
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			520	A
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			560	Þ
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 125^{\circ}C$			440	A
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			475	A
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.35	kA ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.31	kA ² s
		t = 10 ms; (50 Hz), sine	T _{v.i} = 125°C			970	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			940	A ² s
C	junction capacitance	$V_{B} = 400 V f = 1 MHz$	$T_{\rm VJ} = 25^{\circ}\rm C$		22		pF
P _{GM}	max. gate power dissipation	$t_{\rm P} = 30 \mu {\rm s}$	T _c = 125°C			10	W
- GM	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$t_{\rm P} = 300 \mu {\rm s}$	-			5	W
PGAV	average gate power dissipation					0.5	W
(di/dt) _{cr}	critical rate of rise of current	T _{v.i} = 125 °C; f = 50 Hz re	epetitive, $I_{T} = 45 \text{ A}$			150	A/µs
(all, all)cr		$t_{\rm P} = 200 \mu {\rm s}; di_{\rm G}/dt = 0.45 {\rm A}/\mu {\rm s}; -$	•				
			on-repet., $I_{\tau} = 27 \text{ A}$			500	A/µs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{\text{DRM}}$	$T_{v_i} = 125^{\circ}C$			1000	
(uv/ut/ _{cr}	onioar rate of not of voltage	$R_{GK} = \infty$; method 1 (linear volta)				1000	ν/μι
V _{gt}	gate trigger voltage	$V_{\rm D} = 6 \text{ V}$	$\frac{ge Hse}{T_{vJ} = 25^{\circ}C}$			1.5	١
V _{GT}	gale ingger vonage	$\mathbf{v}_{\mathrm{D}} = 0 \mathbf{v}$	$T_{vJ} = -40^{\circ}C$			1.6	v v
	acto triacor ourrent						
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$			100	mA
		NI 27.11	$T_{\rm VJ} = -40^{\circ}\rm C$			200	mA
V _{GD}	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DRM}$	$T_{vJ} = 125^{\circ}C$			0.2	۷
I _{GD}	gate non-trigger current					10	mA
I.	latching current	$t_p = 10 \ \mu s$	$T_{vJ} = 25 °C$			450	mA
		$I_{\rm G} = 0.45 \text{A}; di_{\rm G}/dt = 0.45 \text{A}/\mu\text{s}$					
I _H	holding current	$V_{D} = 6 V R_{GK} = \infty$	$T_{vJ} = 25 ^{\circ}C$			200	m/
t _{gd}	gate controlled delay time	$V_{D} = \frac{1}{2} V_{DRM}$	$T_{vJ} = 25 \degree C$			2	με
		$I_{G} = 0.45 \text{ A}; \ di_{G}/dt = 0.45 \text{ A}/\mu \text{s}$	3				
t _q	turn-off time	$V_{R} = 100 \text{ V}; I_{T} = 20 \text{ A}; \text{ V} = \frac{2}{2}$	⅓ V _{DRM} T _{VJ} =100 °C		150		με
		$di/dt = 10 \text{ A}/\mu \text{s} dv/dt = 20 \text{ V}/\mu$	/us_t_= 200 us				1


 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

20161222b

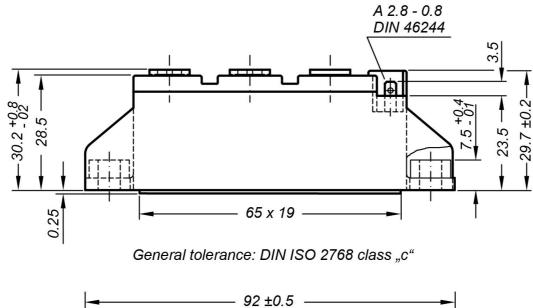
LIXYS

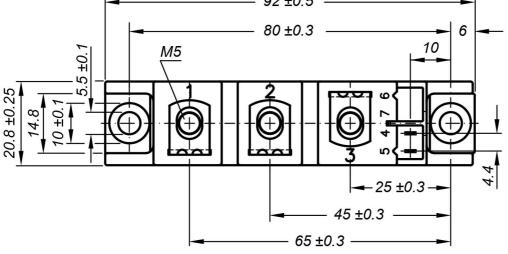
MCD26-14io1B

Package	kage TO-240AA				F	Rating	3	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal					200	Α
T _{vj}	virtual junction temperature				-40		125	°C
T _{op}	operation temperature				-40		100	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque				2.5		4	Nm
d _{Spp/App}	App creepage distance on surface striking distance through air	terminal to terminal	13.0	9.7			mm	
d _{Spb/Apb}	creepage uistance on sunac	e Striking distance through an	terminal to backside	16.0	16.0			mm
V	isolation voltage	t = 1 second			3600			V
	t = 1 minute		50/60 Hz, RMS; liso∟ ≤ 1 mA		3000			V

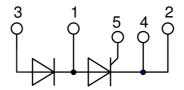
Date Code

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCD26-14io1B	MCD26-14io1B	Box	36	500948

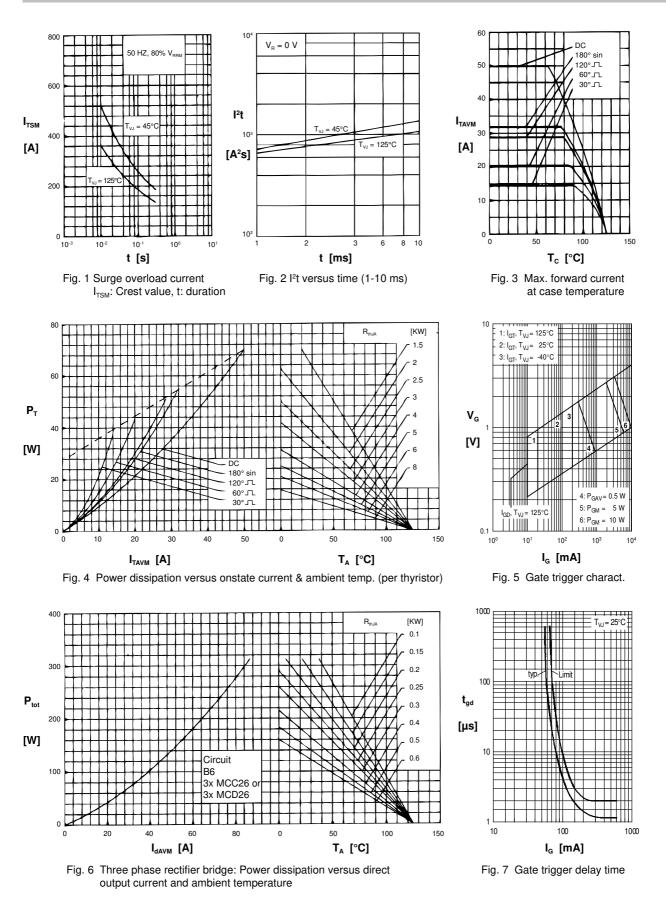

Similar Part	Package	Voltage class
MCMA35PD1600TB	TO-240AA-1B	1600
MCMA50PD1600TB	TO-240AA-1B	1600


Equiva	lent Circuits for	Simulation	* on die level	T _{vj} = 125 °C
	⊢R₀−	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$\mathbf{R}_{0 \max}$	slope resistance *	9.8		mΩ

IXYS reserves the right to change limits, conditions and dimensions.


20161222b

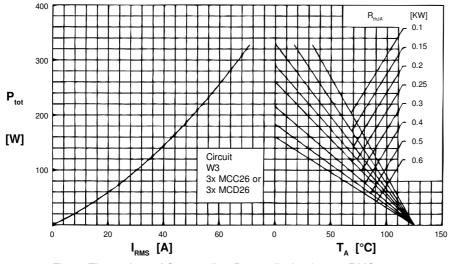
Outlines TO-240AA

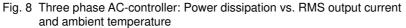


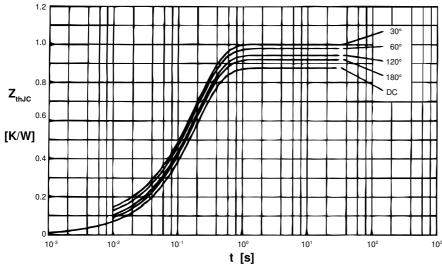
Optional accessories: Keyed gate/cathode twin plugs Wire length: 350 mm, gate = white, cathode = red UL 758, style 3751 Type **ZY 200L** (L = Left for pin pair 4/5)

LIXYS

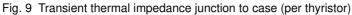
Thyristor

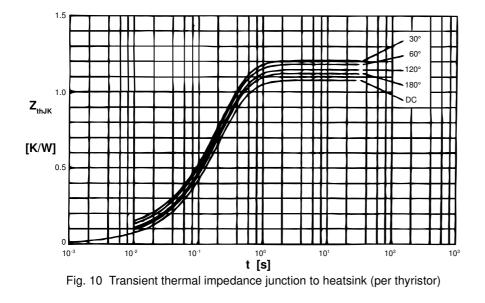



IXYS reserves the right to change limits, conditions and dimensions.


MCD26-14io1B

LIXYS


Rectifier



$R_{_{\mathrm{thJ}}}$	for varie	ous conduction angles d:
	d R _t	_{hJC} [K/W]
	DC	0.88
	180°	0.92
	120°	0.95
	60°	0.98
	30°	1.01
Cor	istants fo	or Z_{thJC} calculation:
i	R _{thi} [K/W] t _i [s]
1	0.019	0.0031
2	0.029	0.0216
3	0.832	0.1910

 R_{thJK} for various conduction angles d: d R_{thJK} [K/W] DC 1.08 180° 1.12 120° 1.15 60° 1.18 30° 1.21 Constants for $\boldsymbol{Z}_{_{thJK}}$ calculation: i R_{thi} [K/W] t_i [s] 0.019 0.0031 1 0.029 0.0216 2 3 0.832 0.1910 4 0.200 0.4500

20161222b

IXYS reserves the right to change limits, conditions and dimensions.

This datasheet has been downloaded from: datasheet.eeworld.com.cn

Free Download Daily Updated Database 100% Free Datasheet Search Site 100% Free IC Replacement Search Site Convenient Electronic Dictionary Fast Search System www.EEworld.com.cn

All Datasheets Cannot Be Modified Without Permission

Copyright © Each Manufacturing Company