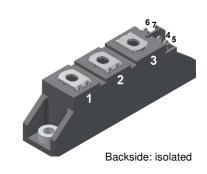
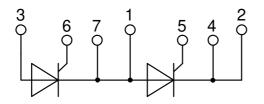
Thyristor Module


MCMA25P1600TA

V_{RRM}	<i>=</i> 2x 1600 V		
I _{tav}	=	25 A	
V _T	=	1.2 V	

Phase leg


Part number

MCMA25P1600TA

20161222c

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

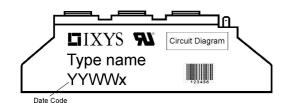
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

LIXYS

MCMA25P1600TA


Thyristo				1	Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwa	rd blocking voltage	$T_{vJ} = 25^{\circ}C$			1700	\ \
V _{RRM/DRM}	max. repetitive reverse/forward bl		$T_{VJ} = 25^{\circ}C$			1600	١
R/D	reverse current, drain current	V _{R/D} = 1600 V	$T_{vJ} = 25^{\circ}C$			100	μ/
		V _{R/D} = 1600 V	$T_{vJ} = 140^{\circ}C$			4	m/
V _T	forward voltage drop	$I_{T} = 25 A$	$T_{vJ} = 25^{\circ}C$			1.22	١
		Ι _τ = 50 A				1.47	١
		$I_{T} = 25 \text{ A}$	$T_{VJ} = 125^{\circ}C$			1.20	١
		I _T = 50 A				1.52	١
ITAV	average forward current	$T_c = 85^{\circ}C$	$T_{vJ} = 140^{\circ}C$			25	ŀ
I _{T(RMS)}	RMS forward current	180° sine				40	ļ
V _{T0}	threshold voltage		T _{vJ} = 140°C			0.87	١
r _T	slope resistance } for power lo	oss calculation only				13	m۵
R _{thJC}	thermal resistance junction to cas	e				1.2	K/W
R _{thCH}	thermal resistance case to heatsi				0.20		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			90	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{v,i} = 45^{\circ}C$			400	ļ
•15M		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			430	ļ
		t = 0,0 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$T_{\rm H} = 0.0$ $T_{\rm V,I} = 140^{\circ}{\rm C}$			340	
		t = 8,3 ms; (60 Hz), sine	$V_{\rm NR} = 0 V$			365	,
l²t	value for fusing	t = 0.5 ms; (50 Hz), sine	$\frac{v_{R} = 0.7}{T_{V,I} = 45^{\circ}C}$			800	A ² s
1-1	value for fusing					770	A-s A ² s
		t = 8,3 ms; (60 Hz), sine t = 10 ms; (50 Hz), sine	$V_{\rm R} = 0 V$				i
			$T_{VJ} = 140 ^{\circ}C$			580	A ² 9
	ium etiene en en etiene en	t = 8,3 ms; (60 Hz), sine	$\frac{V_{R} = 0 V}{T_{R} = 0 V}$		10	555	A ² s
C,	junction capacitance	$V_{\rm R} = 400 \text{V} \text{f} = 1 \text{MHz}$	$T_{\rm VJ} = 25^{\circ}\rm C$		16	10	pl
Р _{GM}	max. gate power dissipation	$t_{\rm P} = 30 \mu s$	$T_c = 140 ^{\circ}C$			10	W
_		t _P = 300 μs				5	W
P _{GAV}	average gate power dissipation					0.5	W
(di/dt) _{cr}	critical rate of rise of current	$T_{vJ} = 125 ^{\circ}C; f = 50 \text{Hz}$ re	•			150	A/μ
		t_{P} = 200 µs; di _G /dt = 0.45 A/µs; -					
			on-repet., $I_{T} = 25 A$				A/μ
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{vJ} = 125^{\circ}C$			1000	V/µs
		$R_{GK} = \infty$; method 1 (linear volta	ge rise)				
V _{ат}	gate trigger voltage	$V_{D} = 6 V$	$T_{vJ} = 25^{\circ}C$			1.5	١
			$T_{vJ} = -40 ^{\circ}C$			1.6	١
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{v_J} = 25^{\circ}C$			55	m/
			$T_{vJ} = -40 ^{\circ}C$			80	mÆ
V _{gd}	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DBM}$	$T_{vJ} = 140^{\circ}C$			0.2	١
I _{GD}	gate non-trigger current					5	mA
	latching current	t _p = 10 μs	$T_{vJ} = 25 ^{\circ}C$			150	m/
-	-	$I_{\rm g} = 0.45 \text{A}; \text{di}_{\rm g}/\text{dt} = 0.45 \text{A}/\mu\text{s}$					
I _H	holding current	$V_{\rm D} = 6 V R_{\rm GK} = \infty$	T _{vJ} = 25°C			100	m/
т _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{vJ} = 25^{\circ}C$			2	μ
• gd	gate controlled delay ante	$I_{G} = 0.45 \text{ A}; \text{ di}_{G}/\text{dt} = 0.45 \text{ A}/\mu\text{s}$				2	μ
•	turn-off time	$V_{\rm R} = 100 \text{ V}; \ I_{\rm T} = 25 \text{ A}; \ V = 3200000000000000000000000000000000000$			150		
t _q		$v_{\rm R} = 100 v, I_{\rm T} = 20 A; V = 7$	3 v _{DRM} I _{VJ} = 125 °C		150		μ

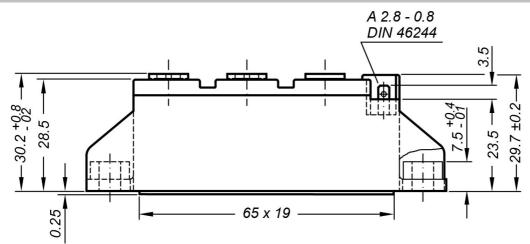
 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

XYS

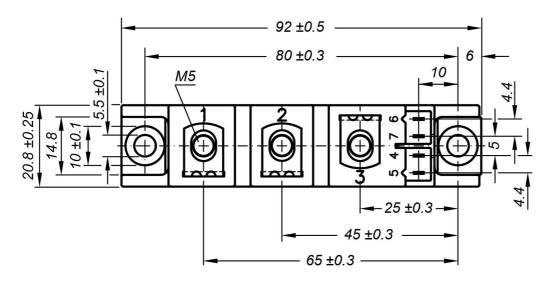
MCMA25P1600TA

Package	Package TO-240AA			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal					60	Α
T _{vj}	virtual junction temperature	9			-40		140	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque				2.5		4	Nm
d _{Spp/App}	araanaa diatanaa an aurf	ace striking distance through air	terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on sund	ace striking distance through an	terminal to backside	16.0	16.0			mm
V	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		4800			V
		t = 1 minute			4000			V

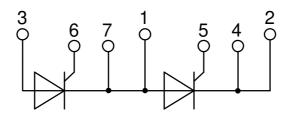
Part description


- M = Module C = Thyristor (SCR) M = Thyristor A = (up to 1800V) 25 = Current Rating [A] P = Phase leg 1600 = Reverse Voltage [V] TA = TO-240AA-1B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA25P1600TA	MCMA25P1600TA	Box	36	514474


Equiv	alent Circuits for	Simulation	* on die level	T _{vJ} = 140 °C
)- <u>R</u>	Thyristor		
V _{0 max}	threshold voltage	0.87		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	11.8		mΩ

20161222c


Outlines TO-240AA

General tolerance: DIN ISO 2768 class "c"

Optional accessories: Keyed gate/cathode twin plugs Wire length: 350 mm, gate = white, cathode = red UL 758, style 3751 Type **ZY 200L** (L = Left for pin pair 4/5) Type **ZY 200R** (R = Right for pin pair 6/7)

MCMA25P1600TA

LIXYS

Thyristor

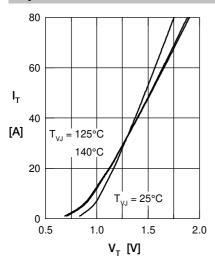


Fig. 1 Forward characteristics

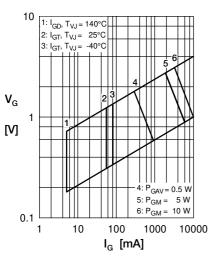


Fig. 4 Gate voltage & gate current

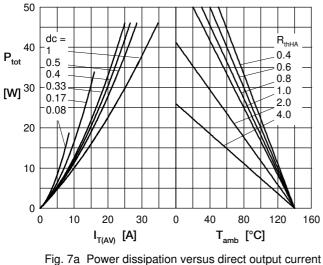
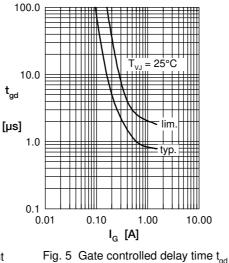



Fig. 7b and ambient temperature

IXYS reserves the right to change limits, conditions and dimensions.

400

300

200

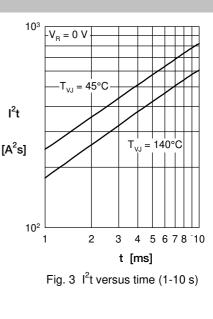
100

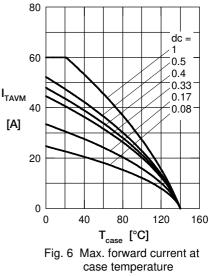
 $T_{VJ} = 140^{\circ}C$

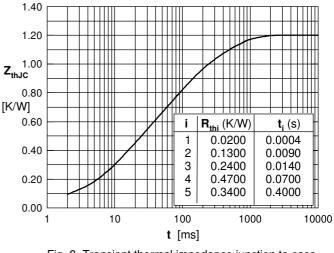
0.1

t [s]

 \mathbf{I}_{TSM} : crest value, t: duration


Fig. 2 Surge overload current


0.01


ITSM

[A]

50 Hz, 80% V

